skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Power, Conor"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Conflict-free replicated data types (CRDTs) are a promising tool for designing scalable, coordination-free distributed systems. However, constructing correct CRDTs is difficult, posing a challenge for even seasoned developers. As a result, CRDT development is still largely the domain of academics, with new designs often awaiting peer review and a manual proof of correctness. In this paper, we present Katara, a program synthesis-based system that takes sequential data type implementations and automatically synthesizes verified CRDT designs from them. Key to this process is a new formal definition of CRDT correctness that combines a reference sequential type with a lightweight ordering constraint that resolves conflicts between non-commutative operations. Our process follows the tradition of work in verified lifting, including an encoding of correctness into SMT logic using synthesized inductive invariants and hand-crafted grammars for the CRDT state and runtime. Katara is able to automatically synthesize CRDTs for a wide variety of scenarios, from reproducing classic CRDTs to synthesizing novel designs based on specifications in existing literature. Crucially, our synthesized CRDTs are fully, automatically verified, eliminating entire classes of common errors and reducing the process of producing a new CRDT from a painstaking paper proof of correctness to a lightweight specification. 
    more » « less